甲钴胺片有什么副作用| 杜松子是什么| 活检是什么检查| 柯萨奇病毒是什么病| 咖啡有什么作用和功效| 上报是什么意思| 拉肚子吃什么药效果好| 女人能日到什么时候| 用盐水泡脚有什么好处| 为什么叫买东西不叫买南北| 窗口是什么意思| 妇科彩超主要检查什么| 遮挡车牌属于什么行为| 有潜力是什么意思| 圆明园是什么时候被烧的| 牛和什么属相相冲| 结婚10年是什么婚| 叶酸有什么好处| 鼻血止不住是什么原因| 什么时候立冬| 广州和广东有什么区别| 皮炎是什么| 什么是海市蜃楼| 违反禁令标志指示是什么意思| 质感是什么意思| vape是什么意思| 上不下大是什么字| 文玩是什么| 胸口疼是什么病的前兆| 9月25是什么星座| 狗喜欢吃什么食物| 吕洞宾代表什么生肖| 假体隆胸什么材料好| 宝宝咳嗽有痰吃什么药效果好| 手掌心痒是什么原因| 肠胃炎吃什么药好得快| 美女什么都没有穿| 绿色加蓝色是什么颜色| 梦见狗咬自己是什么意思| 脾虚是什么症状| 减肥医院挂什么科| 国防部是干什么的| 美国报警电话为什么是911| 心理学属于什么学科| 晚上八点到九点是什么时辰| 子宫附件彩超检查什么| 为什么会得白癜风| 招财进宝是什么意思| 鱼漂什么牌子的好| 什么是匝道| 女生的隐私部位长什么样| 胸口隐隐作痛挂什么科| 糖耐量异常是什么意思| 价值是什么| sob是什么意思| 正常舌头是什么颜色| 玫瑰花茶和什么搭配好| 曼妥思是什么糖| 甘油三酯偏高说明什么问题| 身份证最后一位代表什么| 一笑倾城是什么意思| 什么虎什么山| 化疗什么意思| 宫颈那囊是什么| 99朵玫瑰花代表什么| 情感和感情有什么区别| 女性出汗多是什么原因| 玉米除草剂什么时候打最好| 隆字五行属什么| 什么是同人文| 中医的望闻问切是什么意思| 缘分什么意思| 一五行属什么| 默念是什么意思| 兵字五行属什么| 吃杏子有什么好处| 男性一般检查什么| 七月份吃什么水果| 痛风可以吃什么肉| 太阳光是什么颜色| 60岁男人喜欢什么样的女人| 祸不单行什么意思| 想吐是什么原因| 喉咙老是有白痰是什么原因| 长疖子用什么药| 什么叫蜘蛛痣| 履约是什么意思| 腿毛多是什么原因| 附骨疽在现代叫什么病| 经方是什么意思| 幽门螺旋杆菌阳性吃什么药| 小孩尿味道很重是什么原因| 电解质水是什么| 720是什么意思| 诊断是什么意思| 冬至注意什么| 守护者是什么意思| 所言极是是什么意思| 太上老君的坐骑是什么| 鼻子发痒是什么原因引起的| 糖类抗原125高是什么意思| 三姓家奴是什么意思| 三个虫念什么| 火奥念什么| 为什么流褐色分泌物| 阿斯伯格综合征是什么| 胸口正中间疼痛是什么病症| 晚上睡觉口干是什么原因| 两个月小猫吃什么食物| 红枣和灰枣有什么区别| 烫伤用什么| 生不逢时什么意思| 海贼王什么时候出的| 眼睛充血吃什么药| 看头发挂什么科| 什么叫cd| 行善积德是什么生肖| 中暑头晕吃什么药| 奴仆宫是什么意思| 胃胀吃什么药最有效| cg是什么| 红色加蓝色等于什么颜色| 性生活是什么意思| 尿多是什么病| 妇科臭氧治疗是什么| 智齿发炎吃什么| 来源朋友验证消息是什么意思| 云为什么不会掉下来| 特首是什么意思| 徐州菜属于什么菜系| 囊肿吃什么药| 脑供血不足用什么药| 一什么帽子| 922是什么星座| 白脉病西医叫什么病| 青色是什么样的颜色| 上海古代叫什么| 皮疹用什么药| 肾小球滤过率是什么意思| 双肺上叶肺大泡是什么意思| 本命年有什么说法| 甲减吃什么食物好| 双肺纹理增多什么意思| 手麻抽筋是什么原因引起的| 粉色裤子搭什么上衣| 左眼皮一直跳什么原因| 头昏和头晕有什么区别| 鼻基底用什么填充最好| 鸟喙是什么意思| 银子有什么功效与作用| 包皮手术挂什么科| 什么网站可以看黄色视频| 金晨为什么叫大喜| 同房子宫疼痛什么原因| 为什么会胀气| 全麻对身体有什么影响| 一什么浮萍| 匹夫是什么意思| 神经损伤吃什么药最好| 贵州菜属于什么菜系| 胰腺炎为什么血糖高| 口头禅什么意思| 阿斯顿马丁什么档次| 狗剩是什么意思| 吃完狗肉不能吃什么| 瘟疫是什么病| 土地出让金什么意思| 外阴病变有什么症状| 小青柑是什么茶类| 下颚长痘痘是什么原因| 真露酒属于什么酒| 卧蚕是什么意思| 梦见袜子破了是什么意思| 什么是马上风| cma检测是什么| 什么是音程| 跳蚤长什么样子图片| 心有余而力不足什么意思| 双下肢静脉彩超主要检查什么| 肠胃炎吃什么水果比较好| 补充免疫力吃什么好| 促甲状腺激素高是什么原因| 痛风什么不能吃| 1999属什么| 儿童看牙齿挂什么科| 什么是意淫| 本命年为什么要穿红色| 木瓜什么时候成熟| 上24休24是什么意思| 冶阳萎什么药最有效| 外阴溃烂用什么药| hpv58阳性是什么意思| 北京晚上有什么好玩的景点| 看见蛇有什么预兆| 做什么饭简单又好吃| 什么是香油| 血气方刚什么意思| 在家做什么赚钱| 什么是环境影响评价| 乙肝五项15阳性是什么意思| 胃糜烂要吃什么药| 肝的主要功能是什么| 神经官能症吃什么药| 中指尖麻木是什么原因| 梦见掉粪坑里了是什么意思| gi食物是什么意思| 浮世是什么意思| 免是什么意思| 宝宝睡觉头上出汗多是什么原因| 榆钱是榆树的什么| 西藏有什么特产| 1月24号什么星座| 做大生化挂什么科| 什么萌| 尿酸偏低是什么原因| 梅核气吃什么药最好| 石榴花是什么颜色| 舌苔厚腻吃什么药| 中暑为什么不能打点滴| 奶瓶什么材质好| 维生素e和维生素c一起吃有什么效果| 克汀病是什么病| 什么是六道轮回| 9月14号什么星座| otc是什么意思| 中医心脉受损什么意思| 面黄肌瘦是什么意思| 螳螂捕蝉黄雀在后是什么生肖| 臭虫怕什么东西| 1884年属什么生肖| 吃什么东西减肥最快| 鸡黍是什么意思| 巳时属什么生肖| 胆气虚吃什么中成药| 高血压吃什么降压药| 穿斐乐的都是什么人| 海肠是什么东西| 鬼一般找什么人压床| 英红九号是什么茶| 为什么会有结石| 青光眼用什么眼药水| dht是什么| 飞机选座位什么位置好| 经期吃芒果有什么影响| 浩瀚是什么意思| 生肖羊和什么生肖相冲| 冬瓜什么季节吃最好| 湿疹吃什么药| 呼吁是什么意思| 巨无霸是什么意思| 孤枕难眠什么意思| 什么叫全科医生| no医学上是什么意思| 26岁属什么生肖| 女性腰酸是什么妇科病| 风生水起是什么生肖| 鸡为什么吃自己下的蛋| 吃什么去黄褐斑最有效| 锅巴吃多了有什么危害| 吃什么会拉肚子| 无后为大的前一句是什么| 草莽是什么意思| 高处不胜寒的胜是什么意思| 膝关节退行性改变是什么意思| 百度Jump to content

车讯:2017年3月上市 冠道1.5T车型申报图曝光

From Wikipedia, the free encyclopedia
(Redirected from GPS navigation device)
百度 希望我们对中国古代狗的研究,能够更加全面地展示古人与狗的相互关系,能够讲述更加有趣的、有科学依据的故事,能够为源远流长、博大精深的中国文化增加新的元素。

Vehicle navigation on a personal navigation assistant
Garmin eTrex10 edition handheld

A satellite navigation device, also called a satnav device or GPS device, uses satellites of the Global Positioning System (GPS) or similar global navigation satellite systems (GNSS) to determine the user's geographic coordinates. It may also display the user's position on a map and offer routing directions (as in turn-by-turn navigation).

As of 2023, four GNSS systems are operational: the original United States' GPS, the European Union's Galileo, Russia's GLONASS,[1][2] and China's BeiDou Navigation Satellite System. The Indian Regional Navigation Satellite System (IRNSS) will follow and Japan's Quasi-Zenith Satellite System (QZSS) scheduled for 2023 will augment the accuracy of a number of GNSS.

A satellite navigation device can retrieve location and time information from one or more GNSS systems in all weather conditions, anywhere on or near the Earth's surface. Satnav reception requires an unobstructed line of sight to four or more GNSS satellites,[3] and is subject to poor satellite signal conditions. In exceptionally poor signal conditions, for example in urban areas, satellite signals may exhibit multipath propagation where signals bounce off structures, or are weakened by meteorological conditions. Obstructed lines of sight may arise from a tree canopy or inside a structure, such as in a building, garage or tunnel. Today, most standalone Satnav receivers are used in automobiles. The Satnav capability of smartphones may use assisted GNSS (A-GNSS) technology, which can use the base station or cell towers to provide a faster Time to First Fix (TTFF), especially when satellite signals are poor or unavailable. However, the mobile network part of the A-GNSS technology would not be available when the smartphone is outside the range of the mobile reception network, while the satnav aspect would otherwise continue to be available.

History

[edit]

As with many other technological breakthroughs of the latter 20th century, the modern GNSS system can reasonably be argued to be a direct outcome of the Cold War of the latter 20th century. The multibillion-dollar[citation needed] expense of the US and Russian programs was initially justified by military interest. In contrast, the European Galileo was conceived as purely civilian.

In 1960, the US Navy put into service its Transit satellite-based navigation system to aid in naval navigation. The US Navy in the mid-1960s conducted an experiment to track a submarine with missiles with six satellites and orbiting poles and was able to observe satellite changes.[4] Between 1960 and 1982, as the benefits were shown, the US military consistently improved and refined its satellite navigation technology and satellite system. In 1973, the US military began to plan for a comprehensive worldwide navigational system which eventually became known as the GPS (Global Positioning System).

A 1993 Magellan Trailblazer XL GPS Handheld Receiver

In 1983, in the wake of the tragedy of the downing of Korean Air Lines Flight 007, an aircraft which was shot down while in Soviet airspace due to a navigational error, President Ronald Reagan made the navigation capabilities of the existing military GPS system available for dual civilian use. However, civilian use was initially only a slightly degraded "Selective Availability" positioning signal. This new availability of the US military GPS system for civilian use required a certain technical collaboration with the private sector for some time, before it could become a commercial reality. The Macrometer Interferometric Surveyor was the first commercial GNSS-based system for performing geodetic measurements.[5][6]

In 1989, Magellan Navigation Inc. unveiled its Magellan NAV 1000, the world's first commercial handheld GPS receiver. These units initially sold for approximately US$2,900 each. In 1990, Mazda's Eunos Cosmo was the first production car in the world with a built-in Satnav system.[7] In 1991, Mitsubishi introduced Satnav car navigation on the Mitsubishi Debonair (MMCS: Mitsubishi Multi Communication System).[8] In 1997, a navigation system using Differential GPS was developed as a factory-installed option on the Toyota Prius.[9] In 2000, the Clinton administration removed the military use signal restrictions, thus providing full commercial access to the US Satnav satellite system.

As GNSS navigation systems became more and more widespread and popular, the pricing of such systems began to fall, and their widespread availability steadily increased. Several additional manufacturers of these systems, such as Garmin (1991), Benefon (1999), Mio (2002) and TomTom (2002) entered the market. Mitac Mio 168 was the first PocketPC to contain a built-in GPS receiver.[10] Benefon's 1999 entry into the market also presented users with the world's first phone based GPS navigation system. Later, as smartphone technology developed, a GPS chip eventually became standard equipment for most smartphones. To date, ever more popular satellite navigation systems and devices continue to proliferate with newly developed software and hardware applications. It has been incorporated, for example, into cameras.

While the American GPS was the first satellite navigation system to be deployed on a fully global scale, and to be made available for commercial use, this is not the only system of its type. Due to military and other concerns, similar global or regional systems have been, or will soon be deployed by Russia, the European Union, China, India, and Japan.

Technical design

[edit]

GNSS devices vary in sensitivity, speed, vulnerability to multipath propagation, and other performance parameters. High-sensitivity receivers use large banks of correlators[clarification needed][citation needed] and digital signal processing to search for signals very quickly. This results in very fast times to first fix when the signals are at their normal levels, for example, outdoors. When signals are weak, for example, indoors, the extra processing power can be used to integrate weak signals to the point where they can be used to provide a position or timing solution.

GNSS signals are already very weak when they arrive at the Earth's surface. The GPS satellites only transmit 27 W (14.3 dBW) from a distance of 20,200 km in orbit above the Earth. By the time the signals arrive at the user's receiver, they are typically as weak as ?160 dBW, equivalent to 100 attowatts (10?16 W)[clarification needed]. This is well below the thermal noise level in its bandwidth. Outdoors, GPS signals are typically around the ?155 dBW level (?125 dBm).

Sensitivity

[edit]

Conventional GPS receivers integrate the received GPS signals for the same amount of time as the duration of a complete C/A code cycle which is 1 ms. This results in the ability to acquire and track signals down to around the ?160 dBW level. High-sensitivity GPS receivers are able to integrate the incoming signals for up to 1,000 times longer than this and therefore acquire signals up to 1,000 times weaker, resulting in an integration gain of 30 dB. A good high-sensitivity GPS receiver can acquire signals down to ?185 dBW, and tracking can be continued down to levels approaching ?190 dBW.

High-sensitivity GPS can provide positioning in many but not all indoor locations. Signals are either heavily attenuated by the building materials or reflected as in multipath. Given that high-sensitivity GPS receivers may be up to 30 dB more sensitive, this is sufficient to track through 3 layers of dry bricks, or up to 20 cm (8 inches) of steel-reinforced concrete, for example.[citation needed] Examples of high-sensitivity receiver chips include SiRFstarIII and MediaTek?s MTK II.[11]

In aviation, the GPS receivers can be "armed" to the approach mode for the destination airport, so that when the aircraft is within 30 nmi (56 km; 35 mi), the receiver sensitivity will automatically change from en route (±5 nm) and RAIM (±2 nm) to terminal (±1 nm), and change again to ±0.3 nm at 2 nmi (3.7 km; 2.3 mi) before reaching the final approach way point.[12]

Sequential receiver

[edit]

A sequential GPS receiver tracks the necessary satellites by typically using one or two hardware channels.[13] The set will track one satellite at a time, time tag the measurements and combine them when all four satellite pseudoranges have been measured. These receivers are among the least expensive available, but they cannot operate under high dynamics and have the slowest time-to-first-fix (TTFF) performance.

Types

[edit]

Consumer GNSS navigation devices include:

  • Dedicated GNSS navigation devices
  • modules that need to be connected to a computer to be used
  • loggers that record trip information for download. Such GPS tracking is useful for trailblazing, mapping by hikers and cyclists, and the production of geocoded photographs.
  • Converged devices, including Satnav phones and geotagging cameras, in which GNSS is a feature rather than the main purpose of the device. The majority of GNSS devices are now converged devices, and may use assisted GPS or standalone (not network dependent) or both. The vulnerability of consumer GNSS to radio frequency interference from planned wireless data services is controversial.

Dedicated GNSS navigation devices

[edit]
Hand-held receivers
A Japanese taxi equipped with GPS

Dedicated devices have various degrees of mobility. Hand-held, outdoor, or sport receivers have replaceable batteries that can run them for several hours, making them suitable for hiking, bicycle touring and other activities far from an electric power source. Their design is ergonomical, their screens are small, and some do not show color, in part to save power. Some use transflective liquid-crystal displays, allowing use in bright sunlight. Cases are rugged and some are water-resistant.

Other receivers, often called mobile are intended primarily for use in a car, but have a small rechargeable internal battery that can power them for an hour or two[citation needed] away from the car. Special purpose devices for use in a car may be permanently installed and depend entirely on the automotive electrical system. Many of them have touch-sensitive screens as input method. Maps may be stored on a memory card. Some offer additional functionality such as a rudimentary music player, image viewer, and video player.[14]

The pre-installed embedded software of early receivers did not display maps; 21st-century ones commonly show interactive street maps (of certain regions) that may also show points of interest, route information and step-by-step routing directions, often in spoken form with a feature called "text to speech".

Manufacturers include:

Integration into smartphones

[edit]

Almost all smartphones now incorporate GNSS receivers[citation needed]. This has been driven both by consumer demand and by service suppliers. There are now many phone apps that depend on location services, such as navigational aids, and multiple commercial opportunities, such as localised advertising. In its early development, access to user location services was driven by European and American emergency services to help locate callers.[15]

All smartphone operating systems offer free mapping and navigational services that require a data connection; some allow the pre-purchase and downloading of maps but the demand for this is diminishing as data connection reliant maps can generally be cached anyway. There are many navigation applications and new versions are constantly being introduced. Major apps include Google Maps Navigation, Apple Maps and Waze, which require data connections, iGo for Android, Maverick and HERE for Windows Phone, which use cached maps and can operate without a data connection. Consequently, almost any smartphone now qualifies as a personal navigation assistant.

The use of mobile phones as navigational devices has outstripped the use of standalone GNSS devices. In 2009, independent analyst firm Berg Insight found that GNSS-enabled GSM/WCDMA handsets in the USA alone numbered 150 million units,[16] against the sale of only 40 million standalone GNSS receivers.[17]

Assisted GPS (A-GPS) uses a combination of satellite data and cell tower data to shorten the time to first fix, reduce the need to download a satellite almanac periodically and to help resolve a location when satellite signals are disturbed by the proximity of large buildings. When out of range of a cell tower the location performance of a phone using A-GPS may be reduced. Phones with an A-GPS based hybrid positioning system can maintain a location fix when GPS signals are inadequate by cell tower triangulation and WiFi hotspot locations. Most smartphones download a satellite almanac when online to accelerate a GPS fix when out of cell tower range.[18]

Some, older, Java-enabled phones lacking integrated GPS may still use external GPS receivers via serial or Bluetooth) connections, but the need for this is now rare.

By tethering to a laptop, some phones can provide localisation services to a laptop as well.[19]

Palm, pocket and laptop PC

[edit]

Software companies have made available GPS navigation software programs for in-vehicle use on laptop computers.[20] Benefits of GPS on a laptop include larger map overview, ability to use the keyboard to control GPS functions, and some GPS software for laptops offers advanced trip-planning features not available on other platforms, such as midway stops, capability of finding alternative scenic routes as well as only highway option.

Palms[21] and Pocket PC's can also be equipped with GPS navigation.[22] A pocket PC differs from a dedicated navigation device as it has an own operating system and can also run other applications.

GPS modules

[edit]
A modern SiRFstarIII chip based 20-channel GPS receiver with WAAS/EGNOS support

Other GPS devices need to be connected to a computer in order to work. This computer can be a home computer, laptop, PDA, digital camera, or smartphones. Depending on the type of computer and available connectors, connections can be made through a serial or USB cable, as well as Bluetooth, CompactFlash, SD, PCMCIA and the newer ExpressCard.[23] Some PCMCIA/ExpressCard GPS units also include a wireless modem.[24]

Devices usually do not come with pre-installed GPS navigation software, thus, once purchased, the user must install or write their own software. As the user can choose which software to use, it can be better matched to their personal taste. It is very common for a PC-based GPS receiver to come bundled with a navigation software suite. Also, software modules are significantly cheaper than complete stand-alone systems (around 50 to €100). The software may include maps only for a particular region, or the entire world, if software such as Google Maps are used.

Some hobbyists have also made some Satnav devices and open-sourced the plans. Examples include the Elektor GPS units.[25][26] These are based around a SiRFstarIII chip and are comparable to their commercial counterparts. Other chips and software implementations are also available.[27]

Applications

[edit]

Vehicle navigation

[edit]

An automotive navigation system takes its location from a GNSS system and, depending on the installed software, may offer the following services:

  • Mapping, including street maps, text or in a graphical format,
  • Turn-by-turn navigation directions via text or speech,
  • Directions fed directly to a self-driving car,
  • Traffic congestion maps, historical or real-time data, and suggested alternative directions,
  • Information on nearby amenities such as restaurants, fueling stations, and tourist attractions,
  • Alternative routes.

Aviation

[edit]

Aviators use Satnav to navigate and to improve safety and the efficiency of the flight. This may allow pilots to be independent of ground-based navigational aids, enable more efficient routes and provide navigation into airports that lack ground-based navigation and surveillance equipment. There are now some GPS units that allow aviators to get a clearer look in areas where the satellite is augmented to be able to have safe landings in bad visibility conditions. There have now been two new signals made for GPS, the first being made to help in critical conditions in the sky and the other will make GPS more of a robust navigation service. Many aviator services have now made it a required service to use a GPS.[28] Commercial aviation applications include GNSS devices that calculate location and feed that information to large multi-input navigational computers for autopilot, course information and correction displays to the pilots, and course tracking and recording devices.

Military

[edit]

Military applications include devices similar to consumer sport products for foot soldiers (commanders and regular soldiers), small vehicles and ships, and devices similar to commercial aviation applications for aircraft and missiles. Examples are the United States military's Commander's Digital Assistant and the Soldier Digital Assistant.[29][30][31][32] Prior to May 2000 only the military had access to the full accuracy of GPS. Consumer devices were restricted by selective availability (SA), which was scheduled to be phased out but was removed abruptly by President Clinton.[33] Differential GPS is a method of cancelling out the error of SA and improving GPS accuracy, and has been routinely available in commercial applications such as for golf carts.[34] GPS is limited to about 15 meter accuracy even without SA. DGPS can be within a few centimeters.[35]

Risks

[edit]
Satnav may suggest an impossible route because it fails to take all conditions into account.

GPS maps and directions are occasionally imprecise.[citation needed] Some people have gotten lost by asking for the shortest route.[36][37][38][39] Brad Preston, Oregon claims that people are routed into his driveway five to eight times a week because their Satnav shows a street through his property.[39] Other hazards involve an alley being listed as a street, a lane being identified as a road,[40] or rail tracks as a road.[41]

Privacy concerns

[edit]

User privacy may be compromised if Satnav equipped handheld devices such as mobile phones upload user geo-location data through associated software installed on the device. User geo-location is currently the basis for navigational apps such as Google Maps, location-based advertising, which can promote nearby shops and may allow an advertising agency to track user movements and habits for future use. Regulatory bodies differ between countries regarding the treatment of geo-location data as privileged or not. Privileged data cannot be stored, or otherwise used, without the user's consent.[42]

Vehicle tracking systems allow employers to track their employees' location raising questions regarding violation of employee privacy. There are cases where employers continued to collect geo-location data when an employee was off duty in private time.[43]

Rental car services may use the same technique to geo-fence their customers to the areas they have paid for, charging additional fees for violations.[44] In 2010, New York Civil Liberties Union filed a case against the Labor Department for firing Michael Cunningham after tracking his daily activity and locations using a Satnav device attached to his car.[45] Private investigators use planted GPS devices to provide information to their clients on a target's movements.

See also

[edit]

References

[edit]
  1. ^ "Russia Launches Three More GLONASS-M Space Vehicles". Inside GNSS. Archived from the original on 6 February 2009. Retrieved 26 December 2008.
  2. ^ "index.php". clove.co.uk. 10 January 2012. Archived from the original on 10 March 2016. Retrieved 3 April 2018.
  3. ^ "What is a GPS?". Library of Congress. Archived from the original on 31 January 2018. Retrieved 29 December 2017.
  4. ^ Mai, Thuy (7 August 2017). "Global Positioning System History". NASA. Archived from the original on 27 July 2019. Retrieved 11 April 2019.
  5. ^ Bock, Y.; Abbot, R. I.; Counselman, C. C.; Gourevitch, S. A.; King, R. W.; Paradis, A. R. (1984). "Geodetic accuracy of the Macrometer model V-1000". Bulletin Géodésique. 58 (2). Springer Science and Business Media LLC: 211–221. Bibcode:1984BGeod..58..211B. doi:10.1007/bf02520902. ISSN 0007-4632. S2CID 119545597.
  6. ^ "Macrometer V-1000". National Museum of American History. 1 January 2010. Archived from the original on 15 May 2021. Retrieved 15 May 2021.
  7. ^ "1993 Eunos/Mazda Cosmo Classic Drive Uncosmopolitan: Meet the rarest Mazda in America". Motor Trend. TEN: The Enthusiast Network. February 2012. Archived from the original on 5 September 2015. Retrieved 18 January 2015.
  8. ^ Sigma Heart (16 January 2015). "Mitsubishi DEBONAIR Commercial 1991 Japan". Archived from the original on 27 February 2020. Retrieved 3 April 2018 – via YouTube.
  9. ^ "Autoradio GPS Android pas cher, Caméra radar de recul - Player Top". www.player-top.fr. Archived from the original on 14 March 2016. Retrieved 18 July 2016.
  10. ^ Griffin, Darren. "Mitac Mio 168 Review". www.pocketgpsworld.com. Archived from the original on 5 March 2016. Retrieved 3 April 2018.
  11. ^ US Patent 6674401, McBurney, Paul W.; Woo, Arthur N., "High sensitivity GPS receiver and reception", published 21 August 2003, issued 6 January 2004 
  12. ^ "Chapter 9. Navigation Systems". Instrument Flying Handbook (PDF) (FAA-H-8083-15B ed.). Federal Aviation Administration Flight Standards Service. 2012. p. 30.
  13. ^ "The Journal on Navigation Glossary". The Journal on Navigation. Archived from the original on 22 January 2023. Retrieved 2 May 2022.
  14. ^ "nüvi? 3500-Serie" (PDF) (User manual). Garmin. Archived (PDF) from the original on 26 June 2021. Retrieved 16 March 2021.
  15. ^ "Smartphone Offline Navigation Software". poi-factory.com. Archived from the original on 7 April 2014. Retrieved 5 April 2014.
  16. ^ "GPS and Mobile Handsets – 4th edition" (PDF). Archived from the original (PDF) on 7 July 2011. Retrieved 1 February 2012.
  17. ^ Kevin J. O'Brien, New York Times, 15 November 2010 Archived 7 November 2017 at the Wayback Machine Smartphone Sales Taking Toll on G.P.S. Devices
  18. ^ Extended Prediction Orbit Archived 1 July 2013 at the Wayback Machine GPS data logger software
  19. ^ "Sony Ericsson - Mobile Broadband - Overview - EC400g". 2 April 2015. Archived from the original on 2 April 2015. Retrieved 3 April 2018.
  20. ^ "List of laptop GPS navigation software programs and reviews". Laptopgpsworld.com. 27 July 2008. Archived from the original on 4 June 2011. Retrieved 1 February 2012.
  21. ^ Dale DePriest. "Navigation with Palm OS". gpsinformation.org. Archived from the original on 28 March 2014. Retrieved 5 April 2014.
  22. ^ "GPS Navigation with the GPS Software". force9.co.uk. Archived from the original on 13 April 2014. Retrieved 5 April 2014.
  23. ^ "PCMCIA GPS adaptors". 5 June 2008. Archived from the original on 5 June 2008. Retrieved 1 February 2012.
  24. ^ "Sony Ericsson - Mobile Broadband - Overview - EC400g". 8 January 2009. Archived from the original on 8 January 2009. Retrieved 3 April 2018.
  25. ^ "Multi-purpose GPS Receiver (link1)". Elektor International Media BV. 1 October 2008. Archived from the original on 7 April 2014.
  26. ^ "Multi-purpose GPS Receiver (link2)". ELEKTOR INTERNATIONAL MEDIA BV. 1 October 2008. Archived from the original on 16 July 2016. Retrieved 16 July 2016.
  27. ^ "GNSS-SDR, an open source Global Navigation Satellite Systems software defined receiver". Centre Tecnològic de Telecomunicacions de Catalunya (CTTC). 2015. Archived from the original on 14 September 2012.
  28. ^ U.S. Air Force (3 October 2018). "Aviation". GPS.gov. National Coordination Office for Space-Based Positioning, Navigation, and Timing. Archived from the original on 26 March 2019. Retrieved 11 April 2019.
  29. ^ "Commanders Digital Assistant explanation and photo" (PDF). 1 December 2007. Archived from the original (PDF) on 1 December 2007. Retrieved 1 February 2012.
  30. ^ "Latest version Commanders Digital Assistant" (PDF). Archived from the original (PDF) on 1 October 2008. Retrieved 4 October 2016.
  31. ^ "Soldier Digital Assistant explanation and photo". 10 June 2008. Archived from the original on 10 June 2008. Retrieved 1 February 2012.
  32. ^ Sinha, Vandana (24 July 2003). "Commanders and Soldiers' GPS receivers". Gcn.com. Archived from the original on 21 September 2009. Retrieved 1 February 2012.
  33. ^ "GPS.gov: Selective Availability". gps.gov. Archived from the original on 19 February 2014. Retrieved 3 October 2012.
  34. ^ "GPS and Golf". leaderboard.com. Archived from the original on 17 October 2012. Retrieved 3 April 2018.
  35. ^ "GPS Accuracy Levels". nps.edu. Archived from the original on 14 October 2012. Retrieved 3 October 2012.
  36. ^ "Body of missing B.C. man Albert Chretien found in Nevada". CBC. 1 October 2012. Archived from the original on 2 October 2012. Retrieved 3 October 2012.
  37. ^ Knudson, Tom (30 May 2012). "'Death by GPS' in desert". The Sacramento Bee. Archived from the original on 4 December 2014. Retrieved 30 November 2014.
  38. ^ Goessl, Leigh (17 March 2012). "GPS fail: Japanese tourists follow course into Australian waters". Digital Journal. Archived from the original on 1 October 2012. Retrieved 3 October 2012.
  39. ^ a b HEUSSNER, Ki Mae (5 March 2010). "GPS Mishaps: When Trust in Tech Leads to Trouble". ABC News. Archived from the original on 16 October 2018. Retrieved 3 January 2025.
  40. ^ Saranow, Jennifer (18 March 2008). "Drivers trust GPS even to a fault". Wall Street Journal. Archived from the original on 22 January 2023. Retrieved 3 October 2012. Last May [2007], the North Yorkshire County Council in England put up signs at the entrance to a gravel track declaring it "unsuitable for motor vehicles" after navigation systems had sent drivers on it as a shortcut between two valleys. The rough road quickly turns stony with steep drops in some places, and locals have had to help cars turn around.
  41. ^ Zaremba, Lauren (10 May 2011). "GPS mishap results in wrong turn, crushed car". The Review. Archived from the original on 22 June 2013. Retrieved 3 October 2012.
  42. ^ Messmer, Ellen. "Want security, privacy? Turn off that smartphone, tablet GPS". Network World. Archived from the original on 24 April 2013. Retrieved 12 February 2013.
  43. ^ Joyce, Kenneth J. "Global Positioning Systems and Invasion of Privacy". Legal Talk. Archived from the original on 7 April 2013. Retrieved 12 February 2013.
  44. ^ Yamshon, Leah (10 February 2010). "GPS: A Stalker's Best Friend". PCWorld. Archived from the original on 18 December 2012. Retrieved 12 February 2013.
  45. ^ KARLIN, RICK (15 September 2011). "GPS used to track fired state worker raises privacy issue". TIMESUNION. Archived from the original on 3 February 2013. Retrieved 12 February 2013.
伽马刀是什么 哭有什么好处 元宵节送什么 手指月牙代表什么意思 人在囧途是什么意思
食糜是什么意思 渡船是什么意思 狗狗怀孕吃什么 早上七点是什么时辰 万什么一心
女人得痔疮原因是什么 21属什么 出水痘能吃什么食物 资金盘是什么意思 股骨头疼痛什么原因
男女接吻有什么好处 人出现幻觉是什么原因 孙耀威为什么被封杀 慢性宫颈炎吃什么药 食物中毒挂什么科
驰字五行属什么hcv9jop3ns0r.cn 罗马布是什么面料hcv9jop3ns6r.cn 血清高是什么原因hcv8jop7ns1r.cn 油麦菜不能和什么一起吃hcv9jop2ns0r.cn kv是什么单位hcv8jop9ns0r.cn
性早熟有什么症状hcv8jop6ns8r.cn 刘强东属什么生肖hcv8jop2ns0r.cn 红糖和黑糖有什么区别hcv8jop0ns8r.cn 吃什么东西补钙hcv9jop1ns0r.cn 头不由自主的轻微晃动是什么病hcv8jop0ns1r.cn
家里为什么有跳蚤hcv7jop9ns7r.cn 吃什么长胎不长肉hcv9jop4ns5r.cn 破屋是什么意思1949doufunao.com 什么样的降落伞dayuxmw.com 不稀罕是什么意思hcv8jop7ns8r.cn
信物是什么意思hkuteam.com 2.1是什么星座hcv8jop7ns6r.cn 海澜之家属于什么档次hcv8jop9ns2r.cn 抑郁症发作是什么感觉hcv8jop3ns6r.cn 2333是什么意思wzqsfys.com
百度